Network Redundancy

MAC — Medium Access Control
The Medium Access Control (MAC) sublayer provides flow control and multiplexing for the transmission medium to control the hardware that interacts with the wired, optic and also wireless transmission media in the IEEE 802 LAN/MAN data link layer.
The MAC is accompanied by the LLC sublayer, which provides flow control and multiplexing for the logical link (i.e. EtherType, 802.1Q VLAN tag etc.)
- The data link layer (MAC + LLC together) represents the 2nd layer of the OSI model
- Within the hierarchy of the OSI model and IEEE 802 standards, the abstraction of the physical layer provided by the MAC sublayer makes the complexities of physical link control invisible to the LLC and upper layers of the network stack.
- Thus, any LLC sublayer (and higher layers) may be used with any MAC, with MAC blocks being formally connected to the physical layer via a media-independent interface (unless the block is already integrated in the physical layer).
- For data transmission between devices in the network, the MAC sublayer encapsulates higher-level frames into frames that suit the transmission medium, adds a frame check sequence to identify transmission errors, and then forwards the data to the physical layer once the corresponding channel access method permits it.
-

Ask us!
Network Redundancy
- HSR — High-availability Seamless Redundancy
- PRP — Parallel Redundancy Protocol
- Ethernet
- MAC — Medium Access Control
- VLAN — Virtual Local Area Network
- IEC 62439–3
- Network Redundancy
HSR (High-availability Seamless Redundancy) is a redundancy protocol for Ethernet networks requiring short reaction times and high availability, as for example protection systems at electrical substations.
Unlike common redundancy protocols like RSTP, HSR reacts to any network component failures seamlessly (without recovery time) and is invisible to the application.
PRP (Parallel Redundancy Protocol) is a redundancy protocol for Ethernet based networks requiring high availability and a short switchover time, as for example protection systems at electrical substations.
Unlike common redundancy protocols like RSTP, PRP reacts to any network component failures seamlessly (without recovery time) and is invisible to the application.
Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN) and also wide area networks (WAN).
Over time, Ethernet has largely replaced competing wired LAN technologies by providing higher bit rates, a greater number of nodes, and longer link distances and decent backward compatibility.
The Medium Access Control (MAC) sublayer provides flow control and multiplexing for the transmission medium to control the hardware that interacts with the wired, optic and also wireless transmission media in the IEEE 802 LAN/MAN data link layer.
The MAC is accompanied by the LLC sublayer, which provides flow control and multiplexing for the logical link (i.e. EtherType, 802.1Q VLAN tag etc.)
A Virtual Local Area Network (VLAN) is a is a subnetwork which can group together collections of devices that are connected to separate physical LANs.
VLANs allow network administrators to partition a single switched network in order to keep network applications separate despite being connected to the same physical network, without requiring new cabling or major changes in the current network infrastructure.
Your content goes here. Edit or remove this text inline or in the module Content settings. You can also style every aspect of this content in the module Design settings and even apply custom CSS to this text in the module Advanced settings.
Network redundancy is a method to ensure network availability, providing failover when a device or network path fails or becomes unavailable.
Redundancy is usually achieved by installing additional or alternative network devices, communication media or equipment within the network infrastructure
MAC and iGrid
iGrid has extensive experience in working with Ethernet and also the IP protocol suite, encpasulating, transfering, mapping and converting data and protocols accross many architectures, networks and application types.

iGW‑S Substation Gateway

iControl SCADA
High-performance SCADA for the visualization and control of substation data. It is able to run either in client/server or standalone modes, providing advanced functionalities such as hot-standby redundancy, automatic line coloring, events notification (via e‑mail and sms), SQL logging, and reports generation.
iGrid Solutions and Applications

Automation with IEC 61850
The IEC 61850 standard is enabling new oportunities for vendor interoperability and advanced substation automation. Find out how you can take advantage of IEC 61850 with easy-to-use and adaptable solutions for a simple migration or retrofit.

HV Substation Automation
Powerful substation automation systems often handle numerous communication protocols and media within one network, which can result in expensive and complex projects. Avoid these problems with interoperable technology and smart configuration tools.

MV Distribution Grid Automation
It is often difficult to find the exact solution you need in a MV application, leading to higher costs than necessary. With our scalable and adaptable solutions you will be able to only pay for what you really need, without comprimising on quality or security.

Photovoltaic Power Station
Using an open and scalable SCADA system to monitor and control a PV plant comes with many benefits on several levels. Find out how advanced communication technology affects PV operation, maintenance, system design, investment security, profits…