Network Redundancy

MAC — Medium Access Control

The Medi­um Access Con­trol (MAC) sub­lay­er pro­vides flow con­trol and mul­ti­plex­ing for the trans­mis­sion medi­um to con­trol the hard­ware that inter­acts with the wired, optic and also wire­less trans­mis­sion media in the IEEE 802 LAN/MAN data link layer.

The MAC is accom­pa­nied by the LLC sub­lay­er, which pro­vides flow con­trol and mul­ti­plex­ing for the log­i­cal link (i.e. Ether­Type, 802.1Q VLAN tag etc.)

  • The data link lay­er (MAC + LLC togeth­er) rep­re­sents the 2nd lay­er of the OSI mod­el
  • With­in the hier­ar­chy of the OSI mod­el and IEEE 802 stan­dards, the abstrac­tion of the phys­i­cal lay­er pro­vid­ed by the MAC sub­lay­er makes the com­plex­i­ties of phys­i­cal link con­trol invis­i­ble to the LLC and upper lay­ers of the net­work stack.
  • Thus, any LLC sub­lay­er (and high­er lay­ers) may be used with any MAC, with MAC blocks being for­mal­ly con­nect­ed to the phys­i­cal lay­er via a media-inde­pen­dent inter­face (unless the block is already inte­grat­ed in the phys­i­cal layer).
  • For data trans­mis­sion between devices in the net­work, the MAC sub­lay­er encap­su­lates high­er-lev­el frames into frames that suit the trans­mis­sion medi­um, adds a frame check sequence to iden­ti­fy trans­mis­sion errors, and then for­wards the data to the phys­i­cal lay­er once the cor­re­spond­ing chan­nel access method per­mits it.
    all entries sort­ed aplhabetically

    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

    Any ques­tions about this?
    Ask us!

      I have read and accept the Pri­va­cy Pol­i­cy*

      Network Redundancy

      HSR (High-avail­abil­i­ty Seam­less Redun­dan­cy) is a redun­dan­cy pro­to­col for Eth­er­net net­works requir­ing short reac­tion times and high avail­abil­i­ty, as for exam­ple pro­tec­tion sys­tems at elec­tri­cal substations.

      Unlike com­mon redun­dan­cy pro­to­cols like RSTP, HSR reacts to any net­work com­po­nent fail­ures seam­less­ly (with­out recov­ery time) and is invis­i­ble to the application.

      PRP (Par­al­lel Redun­dan­cy Pro­to­col) is a redun­dan­cy pro­to­col for Eth­er­net based net­works requir­ing high avail­abil­i­ty and a short switchover time, as for exam­ple pro­tec­tion sys­tems at elec­tri­cal substations.

      Unlike com­mon redun­dan­cy pro­to­cols like RSTP, PRP reacts to any net­work com­po­nent fail­ures seam­less­ly (with­out recov­ery time) and is invis­i­ble to the application.

      Eth­er­net is a fam­i­ly of wired com­put­er net­work­ing tech­nolo­gies com­mon­ly used in local area net­works (LAN) and also wide area net­works (WAN).

      Over time, Eth­er­net has large­ly replaced com­pet­ing wired LAN tech­nolo­gies by pro­vid­ing high­er bit rates, a greater num­ber of nodes, and longer link dis­tances and decent back­ward compatibility.

      The Medi­um Access Con­trol (MAC) sub­lay­er pro­vides flow con­trol and mul­ti­plex­ing for the trans­mis­sion medi­um to con­trol the hard­ware that inter­acts with the wired, optic and also wire­less trans­mis­sion media in the IEEE 802 LAN/MAN data link layer.

      The MAC is accom­pa­nied by the LLC sub­lay­er, which pro­vides flow con­trol and mul­ti­plex­ing for the log­i­cal link (i.e. Ether­Type, 802.1Q VLAN tag etc.)

      Vir­tu­al Local Area Net­work (VLAN) is a is a sub­net­work which can group togeth­er col­lec­tions of devices that are con­nect­ed to sep­a­rate phys­i­cal LANs.

      VLANs allow net­work admin­is­tra­tors to par­ti­tion a sin­gle switched net­work in order to keep net­work appli­ca­tions sep­a­rate despite being con­nect­ed to the same phys­i­cal net­work, with­out requir­ing new cabling or major changes in the cur­rent net­work infrastructure.

      Your con­tent goes here. Edit or remove this text inline or in the mod­ule Con­tent set­tings. You can also style every aspect of this con­tent in the mod­ule Design set­tings and even apply cus­tom CSS to this text in the mod­ule Advanced settings.

      Net­work redun­dan­cy is a method to ensure net­work avail­abil­i­ty, pro­vid­ing failover when a device or net­work path fails or becomes unavailable.

      Redun­dan­cy is usu­al­ly achieved by installing addi­tion­al or alter­na­tive net­work devices, com­mu­ni­ca­tion media or equip­ment with­in the net­work infrastructure

      MAC and iGrid

      iGrid has exten­sive expe­ri­ence in work­ing with Eth­er­net and also the IP pro­to­col suite, enc­pa­su­lat­ing, trans­fer­ing, map­ping and con­vert­ing data and pro­to­cols accross many archi­tec­tures, net­works and appli­ca­tion types.

      iGW‑S Substation Gateway

      Pow­er­ful and reli­able sub­sta­tion gate­way, able to run either in stand­alone or redun­dant modes, with an embed­ded Eth­er­net switch (4 ports) and IEC 61850 client and serv­er capabilities.

      iControl SCADA

      High-per­for­mance SCADA for the visu­al­iza­tion and con­trol of sub­sta­tion data. It is able to run either in client/server or stand­alone modes, pro­vid­ing advanced func­tion­al­i­ties such as hot-stand­by redun­dan­cy, auto­mat­ic line col­or­ing, events noti­fi­ca­tion (via e‑mail and sms), SQL log­ging, and reports generation.

      iGrid Solutions and Applications

      Automation with IEC 61850 

      The IEC 61850 stan­dard is enabling new opor­tu­ni­ties for ven­dor inter­op­er­abil­i­ty and advanced sub­sta­tion automa­tion. Find out how you can take advan­tage of IEC 61850 with easy-to-use and adapt­able solu­tions for a sim­ple migra­tion or retrofit.

      HV Substation Automation

      Pow­er­ful sub­sta­tion automa­tion sys­tems often han­dle numer­ous com­mu­ni­ca­tion pro­to­cols and media with­in one net­work, which can result in expen­sive and com­plex projects.  Avoid these prob­lems with inter­op­er­a­ble tech­nol­o­gy and smart con­fig­u­ra­tion tools.

      MV Distribution Grid Automation

      It is often dif­fi­cult to find the exact solu­tion you need in a MV appli­ca­tion, lead­ing to high­er costs than nec­es­sary. With our scal­able and adapt­able solu­tions you will be able to only pay for what you real­ly need, with­out com­prim­is­ing on qual­i­ty or security.

      Photovoltaic Power Station

      Using an open and scal­able SCADA sys­tem to mon­i­tor and con­trol a PV plant comes with many ben­e­fits on sev­er­al lev­els. Find out how advanced com­mu­ni­ca­tion tech­nol­o­gy affects PV oper­a­tion, main­te­nance, sys­tem design, invest­ment secu­ri­ty, profits…

      Protocol Conversion

      As com­mu­ni­ca­tion net­works grow in com­plex­i­ty, “plug and play” promis­es become hard­er to keep. Inter­op­er­a­ble pro­to­col con­vert­ers and soft­ware solu­tions with state-of-the-art capa­bil­i­ties and funci­tonal­i­ties can be the bridge to all the func­tions and flex­i­bil­i­ty your net­work needs.

      Generation Dispatch Control Center

      With a gen­er­a­tion dis­patch enter you can auto­mat­i­cal­ly con­trol the gen­er­a­tion of all pow­er plants and make direct bids for ancil­lary ser­vices on one plat­form. Check out the most effi­cient com­mu­ni­ca­tion path between gen­er­a­tion sites, grid oper­a­tors and the pow­er market.

      Smart Metering

      A sin­gle device that col­lects, process­es, trans­fers smart meter data and load curves from sev­er­al meters in dif­fer­ent pro­to­cols via ser­i­al or Eth­er­net, whilst pro­vid­ing advanced automa­tion func­tions? Adapt­able designs and a full com­mu­ni­ca­tion pro­to­col suite make it possible. 

       

      Switchgear & Transformers

      Some­times you have pre­ferred gear for a project or it has already been installed, but it is lack­ing the com­mu­ni­ca­tion capa­bil­i­ties to pro­vide the automa­tion func­tions you are look­ing for. With our soft­ware core iGComms any device can be as smart as you want it to be.